Advancing Sustainable Nanotechnology: Safer Carbon Nanotubes (CNTs) and CNT-Enabled Products

Overview

Carbon nanotubes (CNTs) are a class of nanomaterials that have the potential to significantly impact human health and the environment in both positive and negative ways. The vast number of CNT applications range from antimicrobial coatings, conductive thin films, advanced battery technology, and high strength composites. The unique properties that inspire these promising applications are also the cause of environmental and human health concern. This application-implication paradox serves as the motivation for our research, which focuses on better understanding the underlying physicochemical properties of CNTs that govern specific responses (e.g. antimicrobial and reactivity).

Study

Ongoing research projects focus on both the molecular and product level. At the molecular level, various techniques are used to systematically modify the surface chemistry of single- (SWNT) and multi-walled (MWNT) carbon nanotubes and thus, alter their physical and chemical properties. At the product level, our work seeks to evaluate the environmental and human health impacts associated with the production and implementation of nano-enabled products. In doing so, we established a quantitative approach to evaluating upstream impact and downstream benefit tradeoffs that can be applied to emerging technologies.   

Impact

The application of our holistic and comprehensive approach to nanomaterial and nano-enabled product systems advances the establishment of property-hazard relationships to simultaneously enhance nanomaterial functional properties and reduce the potential for unintended consequences, ultimately enabling a sustainable future for the nanotechnology industry.


Publications

A Free Energy Approach to the Prediction of Olefin and Epoxide Mutagenicity and Carcinogenicity